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The connection of information measures such as the uncertainty after analysis and the information 
gain with inputs and outputs or with input-output relations in the system in which an analysis 
runs through as a process of obtaining information is shown on examples of instrumental or chro­
matographic qualitative analyses and of quantitative and trace analyses. 

In preceding papers of this series 1- 3 it has been shown that the information gain or 
the aposteriori uncertainty of quantitative analysis results depend on their precision 
and unbiasne-ss; as far as results of instrumental quantitative analyses have been 
considered also the importance' of the selectivity of the analytical procedure for the 
amount of information obtained by the analysis has been mentioned. For trace 
analyses4 the dependence of the information gain on the determination limit has been 
studied. Here we will point out the close connection of the information aposteriori 
uncertainty of results of chromatographic or instrumental qualitative analyses with the 
selectivity of the procedure. 

Precision, unbiasness, the determination limit, and selectivity are given by the 
input-output rdation of the analytical system in which the analysis runs through as 
a process of obtaining information about the chemical composition of the analyzed 
sample. Various types of analyses can be described by various models for inputs, 
outputs, and input-output relations. Adequately chosen measures are mathematical 
means enabling the description of information properties of individual models . 
Therefore we will show on some examples how formulae for the amount of informa­
tion are linked with the model of the input-output relation of the analytical system. 

THEORETICAL 

Analysis as a process of obtaining information always runs through in a system with 
an input-output relations. In the case of instrumental (e.g ., emission spectrographic 
or IR spectrometric) or chromatographic (PC or TLC) qualitative analyses 6

,7 the 

Part XVII in the series Theory of Information as Applied to Analytical Chemistry; Part 
XVI: This Journal 47, 1195 (1982). 
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input is represented by a set of n possible components Xi (i = 1,2, ... , n), the output 
by a set of signals in positions Z j (j = 1, 2, .. . , 111 ; m ~ n) and the input-output 
relation can be described by a matrix of conditional probabilities II a ij 11

6 of the dimen­
sion n x m. The matrix elements aij = P(i I j) are probabilities that the component 
Xi is present in the input if we get a signal in the position Zj in the output. For a per­
fectly selective procedure of a qualitative or identification analysis the matrix II aij II is 
square n x n and diagonal with elements aii = 1, aij = 0, i =t= j. H. KaiserS intro­
duced the following quantity for the quantification of the selectivity of a multicom­
ponent quantitative analysis procedure 

3 = min ( __ ai~i - 1) , 
i = I •... . 11 ~ 

~ aij - aii 
j = 1 

(1) 

where aij = Yij is the partial sensitivity of the determination of the ith component by 
means of a signal in position Zj ' This quantity can be analogously used to. express 
the selectivity of a procedure of qualitative or identification analysis if we substitute 
aij = P(i I j). It is true in either case that the selectivity of an analysis is the more per­
fect the greater is 3; indeed, if aij = P(i I j), it does not assume such high values 
even if the selectivity is good as it does for aij = Yij where Yij can be large enough 
(~103). The aposteriori uncertainty of a qualitative or identification analysis, i.e., 
the uncertainty after analysis when a signal in the position Zj in the output was mea­
sured is given by Shannon's entropy 

(2) 

The value of H[P(i I j)] is obviously small if the selectivity is high and the entropy 
can take on different values for the same value of the quantity 3 according to the 
spread of the aij's around aii' An example of the influence of conditional probabili­
ties upon the uncertainty has been illustrated by Liteanu and Rica6

• Instead of entro­
py given by (2) it is sometimes more advantageous, for assessing the selectivity of 
a quantitative analysis procedure, to use its "relative" value 

H,= 

rn 

I aij log aij 
j = l 

log m 
(3) 

with ° ~ H, ~ 1 because the maximum value of H[ P(i I j)] is log m; it takes on this 
value for the discrete uniform distribution when P(i I j) = l/m, j = 1, 2, ... , m. 
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In the case of quantitative analyses the input into the system in which analytical 
information arises is given by a fixed but unknown value of the content Xi of the ith 
component and the output is a signal in position Zj with intensity l'Jij behaving as a 
continuous random variable. The input-output relation can be represented by a ca­
libration function fW) or by an analytical function fi(t). The final result ~i is taken 
as a continuous random variable with a probability density p(x). The uncertainty 
after a quantitative analysis depends on whether the input-output relation, i.e., fi(f) 
and fg), or its realization in processing the analytical signal (the stoichiometric 
"factor", the calibration curve or straight line, the standard addition, the inner 
standard, etc.) excludes or cannot exclude the possibility of the rise of a systematic 
error. If always E[~J = Xi' i.e., the results are unbiased, the uncertainty can be 
expressed by Shannon's enetropy 

H(p) = -JX2P(X)IOgbP(~)dX, 
Xl 

(4) 

where S~~ p(x) dx = 1. For normally distributed results of a quantitative analysis 
we get the uJ:t.certainty after analysis (using natural logarithms) 

H(p) = tIn 2n: e(J~ (5) 

i.e., it depends only on the variance (J~ characterizing the precision of the results. 
If the analytical system cannot exlude the rise of a systematic error bi = IXi - Ild 
where Ili = E[~J we have to evaluate the inaccuracy of the aposteriori distribution 
by the means of the Kerridge-Bongard measure of inaccuracy 

H(q I p) = - f: q(x) 10gb p(x) dx , (6) 

where q(x) is the true distribution, f:~ q(x) dx = 1, and p(x) > 0 for x E (Xl' x2 ) is 
the distribution found by the analysis, 1 - e ~ f~~ p(x) dx ~ 1 (e ~ 1). Now it 
depends on how we substitute the true ditsribution q(x): as far as we take it for an 
arbitrary but very narrow continuous distribution with the expectation Xi we obtain 
for normally distributed results 

H(X I p) = ~ [In 21t(J~ + (~YJ . (7) 

The negative value of this quantity was chosen2 to characterize quantitative analytical 
methods or as an objective function 12 to optimize quantitative analytical procedures. 
However; q( x) can be substituted by a distribution of the same type and variance as 
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p(x) but with the expectation Xi; then we obtain for normally distributed results 

H(q I p) = ~ [In 21tea; ; (~YJ (8) 

so that H(q I p) = H(X I p) + 1-
The information gain of a quantitative analysis provided that the input-output 

relation can exclude the rise of a systematic error is given by the divergence measure 6 

l(p, Po) = H(p I Po) - H(p) = IX

2 p(x) In p(x) dx. 
x, Po(x) 

(9) 

Its properties were described earlier9 ,10; here we wish to recall only that it depends 
on the precision of the results and on the extent to what the results confirmed the 
apriori assumptions, i.e., on "the moment of surprise" at the results. If the input­
-output relation cannot eliminate the systematic error we evaluate the inaccuracies 
before and after analysis by the means of the Kerridge-Bongard measure (6). Then 
the information gain can be decomposed as 

1(1'; p, Po) = H(r I Po) - H(r I p) = rex) In - dx , IX
2 p(x) 

x, Po(x) 
(10) 

where rex), Po(x), and p(x) are the true, the apriori and the aposteriori probability 
distributions, respectively. In that specific case when we choose the uniform Po(x), the 
normal p(x) with an expectation Pi =1= Xi' and the normal rex) with the expected value 
Xi and with the same variance as has p(x) the formula (10) yields 

1(1'; p, Po = In - -. - - - -) 
X2-Xl 1 (c5 i)2 

O"i .J(21te) 2 O"i 
(11) 

which was derived for the information gain of results subject to a systematic error 
c5 i = IXi - Pi I in 11 and in Section 6.4 of the monograph 5 • If all the three distributions 
are normal and namely the true one with the mean value Xi and with the variance 
0";, the apriori one with Po and 0"6, and the aposteriori one with parameters P and 
0"2 then 

where c5 0 = IXi - Pol and c5 = IXi - pI· For P = Xi and O"r = 0" the result in (12) 
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changes into 

I(r; p, Po) = In~ + ! [(J1. - J1.0)2 _ 0"2 - O"~J 
0" 2 0"0 O"~ 

shown in Section 6.6 of the monograph 5 and valid for the divergence measure of the 
information gain when p(x) and Po(x) are normal. 

Thus the aposteriori uncertainty of the results of a quantitative analysis depends 
either only on the precision (4) unless the results are subject to a systematic error 
or on the precision and the unbiasness (6) provided that a systematic error is present. 
The information ga~n always depends on "the moment of surprise" and either only 
on the precision as in case (9) or also on the unbiasness as in (10) according to how 
we express the apriori and aposteriori uncertainties. 

In trace analyses the input into an analytical system is given by a small but unknown 
value X i and the output is a signal in position Zj. The iptensity of this signall1ij can be 
so small that it cannot be distinguished from the background noise and the analysis 
results in the finding that the content of the sought-for component (i ~ xo, i.e. , 
that it does not surpass the determination limit Xo, or that it is distinguishable from 
the noise of the background and enables the determination of the ith component, 
i.e., ~i > Xo. In (ref.4) and in Section 6.7 of5 it has been shown that the information 
gain of trace analyses depends on Xo in such a way that it increases with decreasing 
values of Xo. The following cases have been considered: 

1) Xi ~ Xo; then I(p, Po) = In ~ (Xl is the highest anticipated content) (13) 
Xo 

2) Xi > Xo and the distribution of the results is normal with Xo < J1.i ~ Xo + 30"i~ 
then 

() Xl 1 zoq>(zo) [ ()] I p, Po = In --r- + - ---. - - In 1 - ¢ Zo , 
O"i V 2ne 2 1 - ¢(zo) 

(14) 

where Zo = (J1.i - XO)/O"i' q>(zo) and ¢(zo) are the frequency and the distribution 
function of the standardized normal variable, respectively. If J1.i > Xo + 30"i the 
formula (14) changes into 

I(p, Po) = In O"i ;(~ne) . (15) 

3) X i > Xo and the distribution of the results is log-normal; then we get 

(16) 

where k is the coefficient of asymmetry of the aposteriori distribution defined in4. 
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In last two cases (Xi> Xo) the information gain depends on the distance J1.i - Xo 
and, with the increase of this distance, its value tends to the value given in (15) which 
is valid for the determination of higher than trace contents of the ith component. 

RESULTS AND DISCUSSION 

Information quantities such as the aposteriori uncertainty, the information gain 
or the equivocation are either explicitly dependent upon or tightly linked with para­
meters of the analytical system as, e.g. , selectivity, precision, accuracy or the determi­
nation limit. These parameters follow from the input-output relation in the analytical 
system. 

The aposteriori uncertainty can be evaluated for various sorts of analyses. Speci­
ficity of the input and the output or of the input-output relation in the system, for 
instance for qualitative, quantitative or trace analyses, enables to obtain its particular 
values. The difference of apriori and aposteriori uncertainties or the equivocation 
as well as the information gain depend on probability distributions characterizing 
the input (the apriori distribution) and the output (the aposteriori distribution) of 
the analytical system, including conditional distributions. Thus information quanti­
ties are due to the model with which we describe the input, the output, and the input­
-output relation of a given analytical system. Several such models have been intro­
duced above: Thus, e.g., the relation between a set of possible components in the 
input of a system for instrumental or chromatographic qualitative or identification 
analysis and a set of signals in the output is described by the matrix of conditional 
probabilities6 and we can enumerate, from any its row, the uncertainty after analysis 
H[P(i I j)] given by (2) or its relative value Hr by (3) or Kaiser's parameter of selecti­
vity E in (1). In the case of quantitative analyses we can take into account, for specific 
apriori and aposteriori distributions, two different input-output relations: for one 
in which the calibration function fi(f) or the analytical function fi(t) yield accurate 
results we evaluate the aposteriori uncertainty by Shannon's entropy in (4) and the 
information gain by the divergence measure (9) ; for the other one when the rise of 
a systematic error must be admitted measures in (6) and (10) have to be employed. 
It means that, for specific distributions, we get varied formulae for aposteriori un­
certainties or inaccuracies (5), (7), and (8) or for information gains (9) and (10) 
according to the input-output relations. Another case is encountered in trace analyses: 
here we distinguish, for the same input and equal input-output relations, three 
different aposteriori probability distributions in the output and information gains 
are evaluated by three different formulae in (13), (14) and (16). 

The preceding findings documented by examples from the fields of instrumental 
or chromatographic qualitative or identification analyses and of quantitative and 
trace analyses have practical importance for the application of information theory in 
judging and optimizing analytical devices as well as systems in which processes of 

Collection CzeChoslovak Chern. Cornrnun. [Vol. 47] [1982] 



1586 Eckschlager : 

creating analytical information run through: All above mentioned features of analy­
tical systems, i.e., selectivity, precision , accuracy, and the determination limit, re­
stricting achievements of analyses result, in instrumental methods, from both the 
technical parameters of the devices and from the procedure, e.g., calibration, the way 
of processing the analytical signals, the substracting a blank experiment, etc. Therefore 
the choice of an instnimental method or of a type of the device can be implemented 
by the use of information profitabili ty ll, which characterizes rather inaffectable 
features given by technical parameters of the devices, and the analytical procedure 
can be optimized by the use of aposteriori uncertainty or of the information gain as 
an objective function. 

Thus it is expedient to judge or to optimize different analytical procedures by those 
parameters that affect the information quantity (the uncertainty or the amount of 
information) most. So, for instance, we will judge an instrumental or chromatographic 
qualitative or identification analysis according to the~ selectivity of the procedure or 
we will use an appropriate measure of selectivity as in (1) or of uncertainty (2) or (3) 
or another objective function, connected with selectivity12, as a response-function in 
the optimization. The selectivity in instrumental analyses is indeed given by para­
meters of the· devices, first of all by the discrimination capability, and/or by the way 
of processing the analytical signal ("the separation" of bands in the IR spectrometry 
by the means of a computer, the Fourier transformation, etc.) while it is given 
mainly by the procedure in chromatographic qualitative or identification analyses. 
Instrumental methods of a quantitative analysis will be rated accmding to precision -
it results from both the parameters of the device and from the procedure - and 
accuracy (unbiasness) of the results. The unbiasness is indeed mainly a matter of 
suitable. calibration or of the elimination of the matrix effect and thus it is affected 
rather by the analytical procedure than by the parameters of the device. In the opti­
mization the formulae (7), (8) , (11) or (12) can be adopted as objective functions. 
Yet optimization has to be carried out for different ways of calibrating or we have to 
find out the most suitable way for the given case beforehand and to optimize the 
entire procedure for this way. In trace analyses methods the determination limit 
appears as the parameter having the greatest effect upon the aposteriori uncertainty 
or upon the information gain; precision and unbiasness are of less use. Moreover 
a low value of the determination limit cuts down the frequency of cases when Xi ~ Xo 

and when the result gives a smaller information gain than that in (14) or (16) as it 
has already been shown earlier4

. 
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